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The incompressible laminar flow in the neighbourhood of the trailing edge of 
an aerofoil undergoing sinusoidal oscillations of high frequency and low amplitude 
in a uniform stream is described in the limit as the Reynolds number R tends to 
infinity. The aerofoil is replaced by a flat plate on the assumption that leading- 
edge stall does not take place. It is shown that, for oscillations of non-dimensional 
frequency O(R*) and amplitude O(R-i%), a rational description of the flow at 
the trailing edge is based on a subdivision of the boundary layer above the plate 
into five distinct regions. Asymptotic analytic solutions are found in four of 
these, whilst in the fifth a linearized solution yields an estimate for the viscous 
correction to the circulation determined by the Kutta condition. 

1. Introduction 
The steady flow of an incompressible viscous fluid near the trailing edge of a 

flat plate aligned with a uniform stream has been studied by both Stewartson 
(1969) and Messiter (1970). When the Reynolds number R is large the flow in 
the neighbourhood of the trailing edge has a three-layer or triple-deck structure. 
The reason for the presence of this triple deck is the discontinuity in the boun- 
dary condition a t  the trailing edge: that of zero tangential velocity on the plate 
is replaced by that of zero stress on the centre-line of the wake. This work was 
extended to the case of an aerofoil a t  incidence by Brown & Stewartson (1970, 
hereafter referred to as I) in the situation when the angle of incidence is O(R-h) .  
It was argued that for larger angles the flow would separate before the trailing 
edge was reached, for smaller angles the flow would be a small perturbation of 
the unseparated zero-incidence case, but that this critical size of angle resulted 
in an adverse pressure gradient on the upper side of the plate which was of the 
same order of magnitude as the favourable pressure gradient induced by the 
triple deck. The flow therefore would separate in the immediate neighbourhood 
of the trailing edge, a phenomenon interpreted as trailing-edge stall. The arbi- 
trary constant in the outer flow, which determines the circulation around the 
aerofoil, was found to be a function of the Reynolds number. When the Reynolds 
number is infinite the value of this arbitrary constant is determined by the usual 
Kutta condition of finite velocity (and hence zero loading) a t  the trailing edge. 
The match between the triple deck and the outer flow yielded a correction to this 
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value which was of relative order R-3. It was then possible to calculate the 
contribution of this correction to the lift coefficient. 

I n  steady flow the Kutta condition may be regarded as well understood, but 
in unsteady flow the situation is not so clear. Hancock (1973, see Riley 1974, 
p. 35), for example, suggested that, in general, there are two independent condi- 
tions (one states that the loading a t  the trailing edge must be zero, the other 
that the inviscid flow must separate from the trailing edge), and argued that 
both these may be satisfied by a suitable choice of two arbitrary constants 
appearing in the solution. Van de Vooren & Van de Vel(l964) chose their single 
arbitrary constant to ensure zero loading in the case of an aerofoil with zero 
trailing-edge angle though if the angle was non-zero this was not possible with 
their model as only the stronger of two singularities could be removed. For the 
problem of the mixing of a uniform stream in the region above the plate with 
static fluid below Orszag & Crow (1970) introduced the notion of three alternative 
conditions to render the flow unique. They found the analytic form of the time- 
harmonic, spatially undulating vortex sheet shed from the trailing edge in the 
situations in which (i) the extreme positions of the sheet form a symmetrically 
disposed parabola, (ii) the fluid from the upper side of the plate does not have to 
turn through an angle greater than n, and (iii) the vortex sheet leaves the plate 
tangentially a t  all times. The authors rather favoured (ii) as being most realistic 
physically though recent experiments by Pfizenmaier & Bechert (1973) on the 
exit condition for alternating flow a t  the trailing edge of a nozzle indicate that 
it is (i) which occurs in practice. It is possible that a viscous study would resolve 
the dilemma of which theoretical condition should be applied. 

I n  the present paper we do not attempt to consider the more difficult problem 
of Orszag & Crow but discuss a situation which extends the theory in I to the 
case of an aerofoil in unsteady motion. For simplicity we take this to be a flat 
plate of length I which is held fixed at its mid-point and performs a sinusoidal 
pitching motion of small amplitude a*l and high frequency w* .  The justification 
for considering a flat-plate aerofoil, so that the flow remains unseparated until 
it enters the trailing-edge region, requires certain restrictions on the thickness 
of the aerofoil and is discussed in I. The parameters of the problem are the 
Reynolds number R = Uml/v, where Urn is the mainstream speed and v is the 
kinematic viscosity, the non-dimensional amplitude a* and the frequency para- 
meter S = w*lIU,. The Reynolds number is assumed to be large and the orders 
of magnitude of the other two parameters are chosen in terms of R. The outer 
potential flow contains an arbitrary constant which will, as in the steady case 
of I, be Reynolds number dependent. We choose the limiting value of this 
constant as R+KI so that the loading a t  the trailing edge vanishes a t  all times, 
and verify that this is indeed a consistent inviscid limit by finding the viscous 
correction to this value. This is achieved by matching the outer flow to that in 
a triple deck of streamwise extent O(1R-9) centred on the trailing edge, the 
structure of which is essentially that of Stewartson (1969). The value of this 
constant determines the circulation around the aerofoil and we are thus able to 
calculate the viscous correction to the lift and moment. 

The orders of magnitude of a* and S are chosen as follows. The flow is to enter 
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a triple deck of streamwise extent O(lR-#) centred on the trailing edge, the 
structure of which is to be essentially that of Stewartson (1969). The main deck 
ofthis triple deck is of thickness O(1R-*) and the lower deck of thickness O(1R-Q). 
Upstream of the triple deck the flow will be a perturbation to that of Blasius 
(1908) and since w* is large there will be a Stokes layer in the neighbourhood of 
the wall of thickness O((v/w*)g).  In this layer the viscous term in the equation 
of motion is balanced by the term involving the time derivative and in order 
that the solution will match with that in the lower deck, we choose the order of 
magnitude of S so that the two layers have the same thickness: thus S = O(Ra).  
If the order of magnitude of S is smaller than O(Ra) the flow will be merely a 
perturbation of that for a steady aerofoil a t  incidence, and if it  is larger it is 
probable that the triple-layer flow near the trailing edge will be destroyed by 
the rapid oscillation. Once the order of magnitude of S has been determined, that 
of a* follows in exactly the same way as did that of the angle of incidence for 
the steady lifting aerofoil. The favourable pressure gradient induced by the 
triple deck is to be of the same order of magnitude as the adverse pressure 
gradient induced by the oscillation. It emerges that for this to hold we must 
have a* = O(R-i%). 

The plan of the paper is as follows. In  $ 2 we obtain the potential solution and 
discuss the form of the Kutta condition. Subsequent sections are concerned 
with the perturbed Blasius flow and its Stokes layer, and with an additional two- 
layer deck which did not occur in the steady problem which we term the fore deck. 
This is of streamwise extent O(1R-a) and lies between the perturbed Blasius flow 
and the Stewartson triple deck. The boundary layers on the two sides of the 
plate then separately enter the triple deck and the flow in the lower deck is 
governed by partial differential equations similar to, though more complicated 
than, those which occur in the steady case. No numerical solution of these equa- 
tions has been undertaken though it is shown that they possess the correct 
asymptotic form both upstream, where a match with the fore deck is required, 
and downstream, where a match is necessary with a Goldstein (1930) wake 
solution with the centre-line displaced. The various regions of the flow are 
illustrated in figure 1.  Region I is the potential flow and regions 11, and 11, are 
the perturbed Blasius layer and its Stokes layer respectively. The two layers of 
the fore deck are denoted by 111, and 111, while region I V  is divided into the 
three layers of the triple deck. Regions V comprise the outer and inner modified 
Goldstein wakes. 

Although no complete solution of the lower-deck equations is available, up- 
stream of the trailing edge it is reasonable t o  linearize about the uniform shear 
with which the streamwise velocity must match at the outer edge. A solution of 
the resulting equations for the difference in the streamwise velocity components 
on the two sides of the plate is then obtainable by Wiener-Hopf arguments of 
the type used in I for the steady case. This is undertaken in $ 9 .  It avoids solving 
for the boundary layer in the wake, and also yields a solution for the antisym- 
metric part of the pressure, which must vanish downstream of the trailing edge. 
The final result is an estimate of the time-dependent viscosity correction to the 
circulation term given by the Kutta condition, as assumed in $2. This leads to 
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FIGURE 1. The regions of flow in the neighbourhood of the trailing edge on the upper side 
of the plate (not to scale). I, potential flow; 11, perturbed Blasius flow and inner Stokes 
layer; 111, the fore deck; IV, the triple deck; V, modified Goldstein wake. 

corrections to the lift and moment which have a phase lag of $ 7 ~  behind the 
leading-order terms. It emerges that there is a stagnation point of the outer flow 
at a distance O(1R-4) from the trailing edge which moves from one side of the 
plate to the other with a phase lag of $ 7 ~  relative to the oscillation of the aerofoil. 

In  the penultimate section we note the modifications required if the aerofoil 
oscillates in a plunging rather than a pitching mode. The arguments are unaltered 
for an appropriate relationship between the respective amplitudes, though the 
expressions for the lift and moment are different in form. 

2. The external potential flow 
Consider a flat plate of length 1 with mid-point at the origin 0 of a set of 

Cartesian co-ordinates (x*, y*) fixed in space. The plate performs oscillations of 
amplitude a*l and frequency w* in an incompressible fluid of constant density 
p which has uniform velocity U, a t  infinity. At any time t*, the equation of the 

(2.1) 

If terms O(a*2) are neglected the potential flow in region I of figure 1 may be 
obtained by thin aerofoil theory and the solution is given by Robinson & Laur- 
mann (1956, chap. 5 ) .  The principal result we shall need is that the pressure on 
the upper surface of the plate is given by 

plate thus y* = - 2a*x* exp (iw*t*) ( - 31 < x* ,< $1). 

*-  1-2x" 4 1+2x* t P A  = +a&*) - 
P u2, ( l+zx*)  ++at*) (m) 

where is the pressure at  infinity. The term a,(t*) represents a leading-edge 
singularity, whilst the term B(t*) is undetermined by the inviscid analysis and 
would be set equal to zero by the Kutta-Joukowski hypothesis of finite pressure 
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at the trailing edge. The functions a,(t*) and a,(t*) are determined a8 

W*l 
U* 

a,(t*) = - 2ia*-exp (iw*t*), a,(t*) = +a* exp (iw*t*), (2.3) 

and although a,(t*) may be written in terms of the Theodorsen function we shall 
only need its value for large w*l/U,, which is 

We aim to determine B(t*) by taking into account the viscous effects in the 
immediate neighbourhood of the trailing edge and write 

uo(t*) = &ia*(w*l/U,) exp (iw*t*) + O(a*). (2.4) 

B(t*) = a*(w*l/Um)2Cexp (iw*t*), (2 .5 )  

where C is an unspecified complex constant; in the following section we shall 
make an assumption regarding the order of magnitude of ICI which will be 
justified a posteriori. The pressure on the lower side of the plate is obtained by 
changing the sign of a* in the above expressions. The total lift L and pitching 
moment M about the mid-chord of the plate due to the potential flow are easily 
obtained from (2.2). We find that 

L = -&n-plU2,{a,(t*) +a,(t*)+B(t*)},\ 
(2.6) M = +~p~2U~{ao( t*)  - a2(t*) --B(t*)}, J 

The velocity components u* and v* of this potential flow will also be required, 
where the real part of these and all complex expressions is to be taken. 

and since our interest is centred on the trailing edge of the plate, where 

& - x*/l 4 1, 

and the frequency parameter X = w*l/Uw is assumed to be large, we replace (2.2) 

The streamwise velocity u* evaluated on the plate will be the mainstream for 
the boundary-layer discussion of the following section. If we denote it by 
Ul(x*, t*) then U, satisfies Bernoulli's equation 

au, au, i ap* 
ax* p a x * $  

ats + urn - = - - - 

where p* is given by (2.7). The general solution of this can easily be obtained 
but we shall find it more convenient to solve it in the particular limiting situa- 
tions to be considered. A similar statement applies to the velocity v* evaluated 
on the centre-line of the wake (y* = O,x* 2 41)) whose value K(x*,t*) satisfies 
the equation 

av, av, a* (("* 1 ) i  ("* 1)-8] - at*fum- = - u2 - 8 2  - -- +C --- exp(iw*t*), (2.9) 
ax* O0 41 1 2  1 2  

for x*ll-  & 4 1. 

meters involved. We define 6 by 
It is convenient at  this stage to specify the orders of magnitude of the para- 

€-a = R = uwyv, (2.10) 
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and stipulate that E 1. Then the streamwise extent of the Stewartson triple 
deck is O(@) and those of the outer, main and lower decks are O(e3) ,  O(s4) and 
O(@) respectively. The pressure induced by the triple deck is 0 ( e 2 ) .  As indicated 
in $ 1 the orders of magnitude of the parameters occurring in this unsteady flow 
will be chosen so that the fluid experiences a deceleration owing to the oscilla- 
tion (on the appropriate side of the plate at  any time) which is comparable with 
the acceleration induced by the triple deck. We first consider the frequency 
parameter 8, which we have already assumed to be large. Upstream of the triple 
deck the boundary layer on each side of the plate will be a perturbation of that 
of Blasius together with a Stokes layer in the neighbourhood of the wall of 
thickness O((v/o*)*).  If we specify the order of magnitude of X so that the 
thicknesses of the Stokes layer and the lower deck are of the same order of 
magnitude it follows that 

s = O(e-2). (2.11) 

The appropriate order of magnitude of a* now follows from (2.7). We require 
that in the triple deck the pressure induced by the change of boundary condition 
a t  the trailing edge, and the perturbation pressure caused by the oscillation be 
comparable. Thus when + - x * / l  is O(e3), then (p*-p,)/pU2,, as given by (2.7), 
is t o  be O(e2).  Thus 

a"S2 = 0(&, (2.12) 

as long as the constant /CI is not of larger order than e3. We now make the 
assumption that ICI is O(e3) so that the two terms of (2.7) are then of the same 
order when &-x*/l is O(e3). The value of C will be determined by the match 
between the lower deck and the flow upstream of the trailing edge. In  $ 7  we 
obtain an estimate of this value, and show that with the above choices of the 
orders of magnitude of S and a* the assumption regarding the order of magnitude 
of ICI is indeed consistent. 

3. The perturbed Blasius boundary layer 
To study the flow in the boundary layer and triple deck it is convenient to 

refer the motion to axes which are fixed in the plate and have their origin at 
the trailing edge. We therefore define co-ordinates (x, y) by 

x*/l- 4 = x + a*yeit, y*/Z = y - a*(x + &) eit, (3.1) 

and corresponding velocities (u, w) by 

'I ( 3 4  
u* -a%* exp (io*t*) = U,(u +ia*Syeit), 

a*u* exp (iw*t*) + w* = ~,[v - i a * ~ ( x  + 4) ei t ] ,  J 
where t = w*t* and terms O ( E * ~ )  have been neglected in accordance with the thin 
aerofoil theory assumption of 5 2. The equation of the plate is now 

y = o  ( - 1 G X 6 0 )  
for all t . 
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The Navier-Stokes equations are modified by additional terms to account for 
the rotation and are given in full by Shen & Crimi (1965). It emerges that for 
the accuracy of the solution presented here these extra terms are of lower order 
of magnitude and need not be considered in any of the flow regions. 

The boundary-layer flow t,hat approaches the trailing edge of the plate is 
that of Blasius together with a perturbation that is O(a*). The mainstream for 
this boundary layer is u = 1 + U ( x )  eit, where the equation satisfied by U(x)  is 
obtained from (2.8)) (3.1) and (3.2) as 

(iS,/S2) U ( x )  + U’(x) = *€*a,s;{( - x)-& - E3CO( - x)-4}, (3.3) 

x = So/@, a* = &ao, c = E3C0, (3.4) 

in which the terms neglected are again O ( E * ~ ) .  Here we have written 

and henceforth regard So, a, and C, as independent of e.  
The perturbed Blasius flow occurs in a region upstream of the trailing edge in 

which - x  = O(1) and y = O(e4); this is region 11, of figure 1. It follows from 
(3.3) that the mainstream for this flow is 

1 - ie%a,X,( - x)-* eit. (3.5) 

It is also clear from (3.3) that (3.5) will be inadequate in a region in which 
- x = O(e2),  which we term the fore deck and consider in the following section, 
and in the triple deck, in which - x  = O(e3) .  If we write 

(3.6) 
- q = y/e4, v = 

the boundary-layer equations appropriate to this mainstream are 

For e < 1 we write (u, V) in (3.7) as a perturbation to the solution of Blasius, and 
apply the condition that u tends to the mainstream velocity of (3.5) as q+m. 
We obtain 

u =fk(6)-$e%aoSo( -x)-+eit+O(ef), (3.8) 

(3.9) 
- 
v = - ( I  + ~ ) - , ( f ~ - 5 f ~ ) + g e ~ i a , S , ~ ( - x ) - , e i t + O ( e ~ ) ,  

where 5 = g/(l +x)* andfB([) is the Blasius function with 

f B ( 0 )  = f;3(0) = 0 and fg(0) = h = 0.3321. 

The term O ( d )  in (3.8) will be affected by the terms in the Navier-Stokes equa- 
tion due to the rotating axes. Clearly (3.8) does not satisfy the no-slip condition 
on the plate, but this is accomplished by consideration of an inner Stokes layer 
of thickness O(e51), which is region 11, of figure 1. In  this region Tj = ez and the 
solution which matches with (3.8) and (3.9) is easily found to be 

(3.10) 

(3.11) 
A€?@ ia, x, 1 

z - - [I  - exp ( - i 4 ~ g z ) l  
4( 1 + x ) ,  ‘“‘3 ( V =  

where i* = (1. + i)/24. 
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4. The fore deck 
It emerges that the solution (3.8) in the main part of the boundary layer 

cannot be matched to the main deck of the triple deck, in which x = O(e3). The 
reason for this is immediately obvious on examination of (3.3), which indicates 
the existence of a region with x = O(e2) in which the neglect of the term U’(x) 
corresponding to the solution (3.5) is not justified. The required transition is 
supplied by the fore deck, denoted by I11 in figure 1, and in it we write 

2, = XI€* = O(1). (4.1) 

The fore deck itself consists of two decks, a main deck 111, where jj = O(1) and 
a lower deck 111, where z = O(1). The latter is effectively redundant since the 
sublayer solution (3.10) and (3.1 1) remains undisturbed and matches with the 
lower deck of the triple deck. The pressure, which to leading order is independent 
of y, remains unaffected throughout the fore deck, and is thus equal to the 
inviscid pressure, which from (3.3) is 

(4.2) p = ( p * - p m ) / p ~ Z ,  = +3aoS~(-xl)+eit+ ... . 

The outer flow for this region is obtained from (3.3) as 

1 + ~ E % X ~ X ~  exp (it - iX,x,) ( -xi)-$ exp (iX,x;) dxi. 

In the main deck of the fore deck we write 

(4.3) 

and substitute into the full equations of motion in the rotating co-ordinates. 
Here Uo(ij) = f;3(?j) and is the Blasius profile evaluated a t  the trailing edge. We 
use the known pressure (4.2) and eliminate U, by means of the continuity equa- 
tion to obtain the following equation for V,: 

Now as xl+ -00 equations (4.4) must match with the normal velocity in the 
main part of the boundary layer upstream, so that from (3.9) we require 

yZ(x,, I) N i a0S0~ /8 (  -x$ as xl -+ - 00. (4.6) 

Also, as jj .+ 00, u, as given by (4.4), must tend to the expression in (4.3). The con- 
dition obtained therefrom on aU,/ax, leads to a condition on av,/ajj. A series 
of substitutions gives the solution of (4.5) satisfying this condition and (4.6) 
as 
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where 

wO(x1, Y) = - ~ o f l w % i j )  ( - 4 4  go(& = iflO/UO(ij), (4.10) 
. 

and m(xl) satisfies m(xl) ( - xl)% + 0 as x1 --f - CO, but is otherwise arbitrary. 
I n  the limit as y+oo the solution is consistent with the mainstream velocity 

(4.3). The function m(xl) is determined by the match with the normal velocity 
in the lower deck as ij+ 0, which is given by the sublayer solution (3.11) written 
in terms of the co-ordinate xl. An investigation of the solution (4.7) shows that 

Tgx1,Y) N iSo?n(x,) +i~aof lo/8(  -xl)Q ( i j - + O ) ,  (4.11) 

so that (4.4) matches with (3.11) only if m(xl) = 0. We shall also require the 
structure of the solution (4.7) as x,-+O- ; here we find that 

which are of the familiar form for a match with a Stewartson triple deck. 

5. The triple deck 

centred a t  the trailing edge of the plate, where 
On leaving the fore deck, the flow enters the triple deck (region I V  of figure 1) 

x2 = 4 6 3  = O(1). (5.1) 

As x2 -+ - co, the solutions in the lower and main decks of the triple deck, where 
z = O( 1) and ij = O( 1) respectively, match with the solutions in the corresponding 
regions of the fore deck whilst the solution in the upper deck, where 

Y = y/s3 = O(1)) 

matches with the potential solution (4.3). 
We first consider the main deck, where 

2, = €2Vrn(X2) 3) t )  + . . . . (5.4) 

Because derivatives involving time do not enter the equations until second- 
order terms are considered, we find that, apart from the time dependence, the 
structure of the main deck is similar to that which applies in the case of a steady 
inclined plate (see I). On substituting (5.2)-(5.4) into the full Navier-Stokes 
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equations in moving co-ordinates and equating coefficients of the leading powers 
of e to zero, we obtain 

I pm(x29 5, t )  = pm(x290, t ) ,  

where A(x2, t )  is a function of x2 and t to be determined and, from the match 
with the solution (4.12) upstream, satisfies 

A(x2, t )  N ( -ia0S0/4h) ( -x2)-heit (x2+ -a). (5 .6 )  

pm(x2, 0,t)  N taoSg( -x2)teit (x2+ -co). (5.7) 

From (4.2) we also have 

An equation relating pm to A follows from the upper deck, where the appro- 
priate solution has the form 

p = e2pu(x2, Y , t )+ ..., 
u = 1+e2uu(x2, Y , t )+ ..., 

(5 .8 )  

(5.9) 

V = “2V,(X2,  Y, t )  + . . . . (5.10) 

Again, no time derivatives are involved to first order and it may easily be shown 
that pu + iv, is st function of x2 + i Y and t only, and that 

(5.11) 

The relations (5.11) are obtained from the match with the solution in the main 
deck as Y + 0. It now follows that 

pu(xZ,O, t )  = P ~ ( z ~ , O ,  t ) ,  ~ u ( x g ,  0, t )  = - aA(x2, t)/ax2- 

(5.12) 

Because of (5.7) here we use Hadamard’s notion of the finite part (denoted by 
9) of the infinite integral. 

Finally we consider the lower deck, of thickness O(e5Z), where the solution has 

(5.13) 
the form 

u = E U & 2 , Z , t ) + . . . ,  (5.14) 

v = e3oZ(x2, 2, t )  + . . . , (5.15) 

and pi(x2, t )  = pm(x2, 0, t ) .  Here the first-order terms satisfy the conventional 
unsteady boundary-layer equations with the following boundary conditions for 

(5.16) u z = y =  0 on x =  0, 

ul-hz-+hA(x2,t) as x + c o ,  (5.17) 

ul+hx as x 2 + - c o .  (5.18) 

Condition (5.17) follows from the match with the solution (5.3) in the maindeck 
whilst (5.18) represents the match with the sublayer flow (3.10) in the lower 
deck of the fore deck. 

p = €2pJ(x2, t )  + . . . , 

x2 < 0: 
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Before setting out the boundary conditions in x2 > 0, it  is convenient to 
consider the solution in y < 0; an analogous argument is used with a few changes 
in sign. The inviscid pressure and velocity perturbations which appear in 
(2.7), (3.5), (4.2) and (4.3) are of opposite sign. The only difference in the key 
equations (5.12) and (5.17) is that the sign of the term corresponding to A(x2 , t )  
changes while the term corresponding to p,(x2, 0, t )  remains unaltered. If we 
denote the value of pl(x2, t )  by pT(x2, t )  when y > 0 and by pB(x2, t )  when y < 0 
with a corresponding notation for AT(x2 ,  t )  and A,(x2, t ) ,  the fundamental 
problem in the lower deck for the oscillating plate can be stated as follows. 

Solve 

(5.19) 
aiz ,aii -aiz a9 a 2 i z  aii az 

fJ-+$.--+v-=--+- -+ -=o ,  
O at ax az a2 aa2’  32 aa 

with 

subject to the boundary conditions 

ii-t 151 (2+ -a), (5.22) 

i i = z = O  on Z = O  (2:0), (5.23) 

iz-z”+6,(2,t) (Z”+a), iz+z”-t  -&(2:,t) (a+ -m), (5.24) 

6, fi smooth for all z”, PT(2, t )  = f3,(2, t )  (2 > 0), (5.25) 

fjT N &ZofJt( -2)3ei t ,  $jB N -G 2 0 0  R2( -2)4eit (2+ -a). (5.26) 

Here the constant h has been eliminated from the problem by means of the 
transformations 

2 = h9x2, z = hfz, ii = A-bu,, z = h-b,, 9 = h-3p1, (5.27) 

A = h%A, Ro = h-gS,, E, = AVa,. 

Conditions (5.22)-(5.24) and (5.26) follow immediately from (5.16)-(5.18) and 
(5.7), whilst in the wake, condition (5.26) represents a continuous flow. 

The general solution of the system (5.19)-(5.25) for this unsteady problem 
has not been attempted though recent advances have been made in the solution 
of two problems which were formulated earlier. Jobe (1973, private communi- 
cation) has performed a numerical integration of the corresponding equations 
for the steady aligned flat plate studied by Stewartson (1969) and Messiter (1970), 
while Daniels (1974) has calculated the solution for the lifting case of I when the 
mainstream is supersonic. In  the supersonic case the outer boundary condition 
(5.24) is slightly simplified because the upper-deck equation is the wave equation 
rather than the potential equation. 
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6. The solution in the lower deck as 121 -+a 
I n  this section we give a brief description of the struct'ure of the lower deck 

both as 2+ +co and as 2-+ -co. The purpose of this is to gain confidence in 
the consistency of the overall formulation of the problem. 
(a) When 121 9 1 and 2 < 0 it is expected that the arguments given in I for 

the symmetric and antisymmetric parts of the pressure will be valid with a 
modification for the time dependence. The antisymmetric part of p ,  *(@, - gB) ,  
which is zero when 5 > 0, will have an asymptotic expansion iii descending 
powers of (-5)&, while the symmetric part Q(pT + 9,) will be dominated by 
the term - 1.7840/33( -2)f as is the pressure in the steady aligned problem. We 
therefore assume that for large negative Z 

where L?, = APC,. (6.2) 

It emerges that there are two layers in this lower deck when - 2  9 1. When 
7 = z"/3 I ZZl* is O( 1) the velocity Q takes the form 

where f is the function of 7 satisfying f ( 0 )  = f ' (0 )  = 0 and f'(a) = 0.183 which 
occurs in the aligned problem (see Stewartson 1969). 

However, when z" is O(1) there is an inner layer which enables the boundary 
condition on Q a t  z" = 0 to be satisfied. The solution in this layer is 

- I itiOflO 1.784f"(0) z" 
u = z - -  [I  - exp ( - i4s"t~")l eit + + O ( (  -a)-*). (6.4) 

4( -Z)& 3 x 2 q  -2)3 

It follows from (6.3) that, when 2 is large and negative, 

iEofloeit 0.326 
6, (2 ' t )  = -- + I + 0(( -2)-j). 

4(-2)3 --x 

(b )  When 121 9 1 and 2 > 0 the appropriate solution is that  for Goldstein's 
(1930) inner wake, which is denoted by V, in figure 1, together with a time- 
dependent displacement of the centre-line. For large 2 we write 

.ii = +($q%&(?j)+..., (6.6) 

where 7 = [Z -  O ( 2 ,  t)]/3(2Z)*. (6.7) 

o =  --( (6.8) B A"T +A",)' 

Here go satisfies &'+2g,gs-gh2 = 0, go(0) = &(O) = 0 and g:(a) = IS, and 
O(2,  t )  is defined by 

whose form for Z 9 1 we already know from (6.1) since in the upper deckp, + iv, 
is a function of xz + i Y (and t )  and &4/ax, = - wu(xz, 0, t ) .  It thus follows from 
(6.1) and the property that jp", = f l B  for 5 > 0 that for 5 9 1 

o(5,t) = -Bd i ,X"i5~e i t+&,s"~~02: :e i t+  ... . (6.9) 
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We may note that the equation x" = O ( 2 , t )  of the centre-line of this wake is 
exactly the equation of the oscillating centre-streamline of the potential flow of 
92 as it enters the trailing-edge region. This can be seen from (2 .9 ) ,  from which 
it follows that for x* - 41 = O(e3Z) the velocity on y* = 0 is (Urn, q), where 

p -  - - _  U,e*a,S${(x*/l - &)* - e3cO(x*/1 - &)-*}eft .  (6 .10)  

The asymptotic forms of the antisymmetric part of A" and the symmetric part 
of fj are derived from the properties of the Goldstein wake. Equation (6 .6 )  
implies that 

i (6 .11)  
+(AT(Z, t )  - AB(X, t ) )  = 1.416 (f2)* + . . . , 
&(f jT (Z ,  t )  + fjB(Z, t ) )  = - 1.784/38& + ...I 

as 2 + co, as in the steady aligned plate solution. 

7. The linearized solution in the lower deck when go B 1 

An approximate solution of the fundamental problem (5 .19) - (5 .26)  is possible 
if we linearize about the shear flow with which C(Z, Z, t )  merges a t  the outer edge 
of the lower deck in a similar way to that in I. We regard the resulting solution 
for .ii as valid only in 2 < 0 since it is not expected that the linear shear is a good 
first approximation in the wake. However, the method of Wiener & Hopf 
enables the functions $(j5T - f j B )  and &(d, +A",) to be determined for all 2, the 
former vanishing for Z > 0. An estimate for the Kutta constant C, may then be 
determined by comparison with the upstream form ( 2 . 7 ) ,  which indicates that 

4 ( fj, - f j B )  - +E, #${ ( - + Co/ ( - z)*} eit (2  -+ - co ) . (7 .1 )  

Denoting the values of G(2,Z, t )  for x" > 0 and 2 < 0 by C,(Z, z", t )  and CB(Z,  z", t )  
respectively, we write 

c ~ ( z , z " ,  t )  = z + W,(Z, 2)  ef t ,  c ~ ( z , z " ,  t )  = z + WB(2, 2) ef t ,  (7 .2 )  

where 2 = I&[,  in (5 .19) ,  neglect the nonlinear terms and subtract to obtain 

a(mT - W B ) p  + a(VT + VB)/az = 0. (7 .4 )  

Here f j T  = pT(2) eit and ij, = pT(Z, 2) ef t  with corresponding notation for pB 
and pB. Differentiation of (7 .3 )  with respect to 2 and elimination of VT+VB 
using ( 7 . 4 )  gives the fundamental equation to be considered for 2 < 0 only as 

(7 .5 )  

where W = +(mT - mB); this is to be solved subject to the conditions 

a2W/aZ2 = Q(2) (2 = 0); W+&(,&+z,) (Z+co). (7 .6a ,  b )  

Here & ( Z )  = -pB) /dZ and 
tion as Z+co follows from ( 5 . 2 4 ) .  

t )  = A"T,B(Z) eit. The boundary condi- 

18-2 
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We now define the Fourier transform of W(2,  2) as w ( w ,  Z), where 

~ ( w ,  Z )  = $-:m ~ ( 2 ,  Z) e-io*dz, 

and transform (7.5) to obtain the solution 

where 

(7.7) 

a+(@) is the Fourier transform of Q(2);  the suffix + indicates that it is a regular 
function of the complex variable w for Im w > 0, since we require that Q(2) = 0 
for 2 > 0. The solution (7.8) satisfies the boundary condition (5.23) on Z = 0 
for 2 < 0 and contains the additional function M-(w, Zl), regular for Im w < 0, 
as the equation and boundary conditions satisfied by W(2,Z)  for 2 > 0 are 
unspecified. The parameter 6 is introduced for convenience and the limit 6+ 0 + 
will eventually be taken. 

Now we define G ( w )  as the Fourier transform of +d2(JT +ZB) /dZ2  and, using 
the fact that both v, and p ,  are harmonic in the variables x2 and Y in the upper 
deck, we find, as in I, that 

- IWI Q+(w) = iwC(0) .  (7.10) 

Transformation of boundary condition (7.6b) gives 

- w W ( w ,  Z )  --f C(w) as z -+ 00, (7.11) 

and since w ( w ,  0) = 0 we have 

(7.12) 

The complicated form of the integral (7.12), with integrand (7.8), leads to a 
formidable factorization problem in the subsequent Wiener-Hopf procedure 
unless flo is either small or large. The steady lifting case of I corresponded to the 
situation in which go = 0 and in order to make further progress in the problem 
of the rapidly oscillating aerofoil we now assume that flo 9 1 so that we may 
replace the Airy functions in (7.8) by their asymptotic expansions. We then 
obtain 

(7.13) 

where 

The transform C(o) may now be eliminated between (7.10) and (7.13) and re- 
placing IwI by ( w - i i S ) ~ ( w + i S ) ~  we have 

Q+(w) K+(w) = ifloNN_(w) K-(@), (7.14) 
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where K+(w) /K- (w)  = K(w) = 1 + 8 , ( ~  + ib')*/(w - id)&. (7.15) 

Here the left-hand side of (7.14) is regular for Imw > 0 and the right-hand side 
for Im w < 0 on the assumption that the factorization (7.15) has been made. 
We make the additional assumption, which may be justified a posteriori, that 
these regions of regularity may be extended to Im w > - S and I m  w < 6 respec- 
tively; the two sides are then equal and regular on a dense set of points, and so, 
by analytic continuation, define a function which is regular everywhere. 

The function K(w) is regular in the w plane cut along the positive imaginary 
axis from +is to + ico and along the negative imaginary axis from - iS to - ico 
and has zeros at  o = - 8$ + $is and w = 5 i8t + $i6. Thus log K ( w )  is regular 
and non-zero in the strip - 6 < Im w < 6, - co < Re w < co and tends to zero 
as Rew+ & co; the factorization (7.15) is thus possible and is performed in the 
usual way (see, for example, Noble 1958) to give 

The arbitrary multiplicative factor has been chosen so that 

(7.18) 

and the integrals in (7.16)) (7.17) and (7.20)-(7.23) below are to be interpreted 
as principal-value integrals. 

We now return to (7.14) and set both sides equal to a constant D, this being 
the function, regular everywhere, which is appropriate to the limiting behaviour 
of J(p, -pB) as 2-+ -co given by (5.26). Thus 

D m eiw2&,, 
Q(2) =-/ - 

2n -mK+(w) '  
(7.19) 

and given a + ( w ) ,  C ( w )  follows from (7.10) and [a~/aZ],=, from (7.8).  With use 
of the substitutions w = - i 8 t r  and w = i8ts where necessary, the three Fourier 
transforms are inverted to give. 

(7.20) 
r+( 1 - r4) 

exp exp (2  < 01, -- 
2 

0 

mexp (8tzr) (1 -ir) (1 +r)*r$exp{~(r)}dr 
1 - r 4  

exp (8tz)exp ( s in)  (2  < 
D@ -- 

-%So 

2 

i l d  - - - - (Pz, - PB) = 
2 d2 

% w 

,,,,(AT+AB) = 

n S*( 1 + S)f 



where 

D exp ( - &in) 
2 

- exp(@Z) (2 < 0), (7.22) 

“ a l o g ( a + r ) d a  
I ( r )  = - 

ni 2 J  a 4 - 1  
(7.23) 

The constant D is determined by the boundary condition (5.26), which 
requires 

( 4)&q&FB)/d2+ -$E0& (2+ -m). (7.24) 

The forms of the integrals (7.20)-(7.22) may be found for large and small values 
of 121 once the asymptotic expansions of the function I ( r )  are known for small 
and large values of Y respectively. Since, from (7.231, I ( r ) + I ( l / r )  = -Pin, we 
need only consider small values of r ,  and we find that 

q r )  -&in + gir + (iln) r2 (log r - g) + op3) (r+- 0). 

Comparison of (7.20) and (7.24) then determines the constant D as 

D = $&ofl,fe%inn&, 

and when 2 is large and negative we have 
- -  

8( - 2)4 

- N iEOflO (l+i)&ofli log(-2) 
g(AT+XB) = --- 

4(-2)* 16(-2)% +O( ( - 2 ) Q  )’ 

while, for 2 > 0, 
+(& +b,) = gao&24 + &zo@( 1 -i) 24 + O( I). 

(7.25) 

(7.26) 

(7.27) 

(7.28) 

(7.29) 

(7.30) 

The leading term of (7.29) is seen to be consistent with the upstream sublayer 
solution (3.10). Of the four arbitrary constants which arise from the integration 
of (7.21), two are chosen to  satisfy the required asymptotic behaviour of 
$(A”,+A”,) as 2+ -03, which is given by (5.6), whilst the other two ensure 
that 4(JT +A”,) and id(&, +A”,)/& are continuous a t  the trailing edge. The 
function id2(& +A”,)/dZ2, on the other hand, is not finite at the trailing edge 
and we have 

(7.31) 

The arbitrary constant in the integration of (7.20) is determined by the require- 
ment that the pressure be continuous a t  2 = 0. 

We may now compare the linearized solution (7.27) with (7.1) to give an 
estimat,e of the previously unknown constant co as 

c0 = - (1 - i)/4fli. (7.32) 
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8. Extension to include a plunging mode 
With suitable adaptation of the outer potential flow over the plate, it may 

easily be shown that the results of SS3-7, describing the trailing-edge flow of a 
plate in pitching motion, may also be applied to the case of a plate performing 
harmonic oscillations in a direction perpendicular to the stream at infinity 
(or to a combination of both). In  order to contrast the two effects we shall now 
consider the latter in isolation. For such a plunging motion, the equation of the 
plate may be written as 

y* = - &h*l exp (iw*t*) ( - iZ < x* 6 iZ), (8.1) 

where o* = O ( E - ~ )  is the frequency (as before) and, for convenience, we write 
the amplitude as hh*l = O(E%). The functions a,(t") (n = 0,1,2) of ( 2 . 2 )  then 
become 

ao(t*) = - &h*(w*Z/U,) exp (io*t*) + U(h*) as w* -+ 00, (8.2) 

a,(t*) = &h*(w*l/U,)2 exp (io*t*), a,(t*) = 0, (8.3) 

and we find that the potential-flow pressure on the upper surface of the plate is 

when i-x*lZ < 1. Here S = w*Z/U, as before and C is defined by the formula 
(2 .5 )  with a* replaced by h*. Comparison of the result (8.4) with the corres- 
ponding formula (2.7) now reveals that all the formulae obtained in $93-7 apply 
t o  the plate performing the plunging mode (8.1)) given that a* is replaced by 
h* and that the transformations (3.1) and (3.2) are replaced by 

x*ll- & = x, y*/l = y - &h*eit, (8.5) 

u* = U-u, v* = U,(v-+ih*Seit). (8.6) 

The effect of the additional terms in the equations of motion is again of sufficiently 
lower order to be neglected in the boundary layer and triple deck. In general, 
then, the trailing-edge effect of a pitching motion is seen to be equivalent to 
that of a plunging motion of half the amplitude. 

9. Results and discussion 
The investigation undertaken in the previous sections has led to a seemingly 

consistent picture of the overall field though admittedly for limiting values of 
the parameters involved. The amplitude a*Z of the oscillation, which is taken to 
be O(Al), is so small that, to the order considered, the additional terms in the 
Navier-Stokes equations due to the change to rotating axes are negligible in 
the boundary layer and triple deck. The frequency parameter S is written as 
S = Xo/e2, where X,, although independent of Reynolds number, is taken to be 
large for the purposes of the linearized solution for the sublayer in $ 7 .  The 
Reynolds number R is related to e by R = c8. 
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The principal results may be summarized as follows. We have considered a 
rapidly oscillating aerofoil of length 1, in a stream Urn, whose displacement a t  
time t* is given by 

with a* = O(&) and w*l/Uw = O(E-~). The potential flow (2 .7 )  around this 
aerofoil contains an arbitrary constant C which is Reynolds number dependent 
and tends t o  zero as R+co to satisfy the Kutta-Joukowski hypothesis of zero 
loading a t  the trailing edge in the inviscid limit. By matching the outer flow to 
the flow in the triple deck we have shown that C = O(e3) and have made an 
estimate of its value. The outcome is that, when So 9 1, the potent,ial-flow 
pressure is given by ( 2 . 7 )  as 

?J* = - 2a%* cos o*t* ( - g1 < x* < i l ) ,  (9.1) 

cos(w*t*-:). (9.2) 

The overall displacement-effect modification to (p* -pw)/p UZ, would be 

O(a*(w*l/Uw)2€4) 

and thus smaller by a factor 6 than the trailing-edge effect given in (9.2). The 
pressure on the plate is also given by (9.2) except in the triple deck, where 
(p* -p,)/pUZ, is O(e2) and the singularity of (9.2) will be smoothed out. However 
the streamwise extent of the deck is O(e3) so the contribution to the lift and 
pitching moment from this region will be O(e5) and thus smaller than that from 
the rest of the plate by a factor E*. The lift and pitching moment on the aerofoil 
calculated from this potential flow are, from (2.6), 

. .  

where the terms neglected are O(&). 

the auation 
When x* - i1 = O(1) the streamline leaving the trailing edge has, from (2.9), 

with a phase lag of &T behind the plate, though when x* - $1 = O(e3Z) it emerges 
from the triple deck in the form 

The value of the potential-flow velocity on the top side of the plate may be 
obtained from (2.8), and that on the lower side by changing the sign of a*. 
When 41 -x* = O(1) it  is 
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but when $1 -x* = O(e31) it is given by 

(9.8) 

(9.9) 

(9.2) holds with a* replaced by h* as do (9.5)-(9.8). The overall effects of the 
plunging mode, however, are quite different from those of the pitching mode, 
for (9.3) and (9.4) must be replaced by 

For the plunging mode in which the equation of the aerofoil is 

y* = - &h*l cos w*t* ( - gl < X* < 41) 

(9.10) 

(9.11) 

where h, corresponds to the scaled parameter a, and is defined by h* = &h,. 
A comparison of these results with (9.3) and (9.4) shows trhat8, as intuition would 
suggest, the plunging motion generates a greater lift, whilst the pitching motion 
has a larger moment about the mid-chord of the plate. 

We are grateful to Professor G. J. Hancock and Professor K. Stewartson for 
their interest in this work and for their helpful discussions. 
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